RectLabel

How to use? Read our Help page.

Post the problem to our Github issues.

Have questions? Send an email to support@rectlabel.com.

Export menus

Export Create ML JSON file

Annotation files are exported as a Create ML JSON file.

createml

[{
    "image": "sneakers-1.jpg",
    "annotations": [
    {
        "label": "sneakers",
        "coordinates":
        {
            "y": 838,
            "x": 393,
            "width": 62,
            "height": 118
        }
    },
    {
        "label": "sneakers",
        "coordinates":
        {
            "y": 881,
            "x": 392,
            "width": 51,
            "height": 102
        }
    }]
}]

Import Create ML JSON file

Export images for classification

All images are exported into object-named subfolders.

classification

└── saved_folder
    ├── object_name0
    ├── object_name1
    └── object_name2

Export COCO JSON file

Annotation files are exported as a COCO JSON file. This format is for Detectron2.

coco_export

For a box object, “segmentation” is exported as empty.

"annotations": [
{
    "area": 254521,
    "bbox": [2150, 419, 595, 428],
    "category_id": 14,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "segmentation": []
},

For a rotated box/polygon/line/point object, “segmentation” is exported as polygons.

"annotations": [
{
    "area": 164608,
    "bbox": [132, 417, 594, 432],
    "category_id": 14,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "segmentation": [
        [136, 557, 152, 532, 191, 509, 266, 482, 367, 456, 375, 428, 427, 417, 486, 443, 516, 481, 518, 499, 564, 522, 611, 518, 661, 536, 701, 557, 724, 574, 719, 597, 691, 645, 723, 654, 715, 678, 695, 719, 681, 759, 681, 791, 670, 801, 659, 789, 656, 765, 627, 756, 644, 778, 629, 832, 591, 842, 553, 834, 514, 809, 494, 781, 491, 767, 433, 769, 403, 761, 405, 794, 387, 823, 369, 840, 344, 847, 309, 837, 295, 810, 286, 776, 290, 755, 297, 741, 259, 723, 216, 693, 179, 658, 147, 629, 132, 601, 132, 577]
    ]
},

For a pixels object, “segmentation” is exported as RLE. RLE is encoding the mask image using the COCO API.

"annotations": [
{
    "area": 1022954,
    "bbox": [212, 0, 4204, 2960],
    "category_id": 26,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "segmentation":
    {
        "counts": "ie_e03cW3O100O1000_knT30QmmjL2MOUW3?K3I]OViLg0iV35D`0FdNoiL]1lU39RjLZNfU3n1M2O2LSOejLGXU3;hjLkNMf0YU3?QkL_OoT3a0VkL[OiT3f0ZkLhNA9UU3o0`kLjNYO1WU3V1Q110O01O001O1O1N2O1L3O2O001O100M120N2N1O2O1O1O1O1O010O1O1O001O001O00100N101O1O1O0O2O001N10001O1O1N20000O1O1O1O00100O1O00101N1000O101O001OO10000O10O010O02N1M201L5L2K6L4N2N2O010O1O1O1O1O100O1O10O01O2OO0101N0010000O10000O1O1O011O000O1O100O1O1O010O100O0010000O1O100O10O01N200O2OO01O2N10O01N3M2O1O1O10O01O1O1O010O101N0O20O100000N1100O1OO200O01O10gaMQKki1o4VVNQKhi1Q5YVNnJgi1R5XVNPKgi1o4ZVNQKei1o4\\VNQKbi1Q5^VNoJbi1Q5^VNPK`i1Q5`VNoJ`i1P5bVNoJ]i1Q5dVNQKYi1P5gVNPKWi1S5hVNmJXi1S5hVNmJVi1T5kVNlJUi1T5kVNlJSi1V5mVNjJRi1X5mVNgJSi1Z5mVNfJQi1\\5nVNeJPi1]5PWNcJPi1]5oVNdJQi1]5nVNcJRi1^5mVNbJPi1a5PWN_JQi1`5nVN`Joh1e5oVN\\JQi1d5oVN\\JPi1e5oVN\\JQi1e5nVN[JQi1f5oVNYJPi1i5oVNXJPi1j5nVNWJQi1k5nVNUJQi1n5mVNQJSi1P6lVNQJRi1T6kVNkIUi1W6iVNjIVi1Y6gVNhIXi1[6eVNfIYi1^6eVNbIZi1_6eVNbIYi1b6eVN\\I\\i1g6aVNZI]i1h6bVNYI]i1h6bVNYI\\i1j6cVNTI]i1o6aVNRI^i1o6aVNPIj\\OFd\\2[7bVNoH^i1S7aVNnH]i1T7cVNlH\\i1U7cVNjH^i1W7aVNjH_i1V7`VNkH_i1V7`VNkH_i1V7`VNiH`i1Y7_VNhH`i1V7bVNkH]i1V7cVNjH\\i1V7dVNjH\\i1W7dVNhH[i1Z7dVNfH]i1Z7cVNeH\\i1\\7dVNdH\\i1\\7dVNeH[i1\\7dVNdH\\i1\\7eVNdHZi1]7eVNbH[i1`7eVN`HYi1b7fVN^H[i1a7eVN`HYi1b7fVN^HYi1d7gVN\\HWi1e7iVNZHWi1h7hVNYHVi1h7jVNWHXi1i7hVNWHUi1k7kVNVHSi1l7lVNTHTi1m7lVNRHSi1o7mVNQHRi1Q8mVNoGSi1R8lVNoGQi1S8oVNmGQi1T8oVNkGPi1V8oVNkGPi1W8oVNiGQi1X8nVNhGQi1Z8oVNfGoh1\\8oVNdGQi1^8oVNaGnh1b8QWN`Gnh1a8QWN^Gmh1f8RWN[Glh1g8SWNXGlh1k8SWNVGlh1j8TWNWGih1l8mmMnFI5\\R2m8kmMnFH5ZR2Q9hmMRGKM\\R2S9imMPGJM]R2T9emMSGMH]R2X9fmMPGLImP2M_gM[9d7QG1GiP23^gMW9g7PG0FmP25WgMW9l7mF1GjP2:_fMYOe0i9Q8mFOHlP2>QgMP9o7lF4GlP2`0ofMl8R8mF2GmP2d0hfMl8U8kF7DmP2i0_fMl8^8gF6DlP2Q;lnM]E6BoP2R;knMZE7EnP2Q;dnM`E=_OPQ2R;anM`E?]OQQ2S;^nMaEa0^OPQ2Q;\\nMdEd0[OPQ2R;YnMeEd0\\OTQ2n:VnMgEg0ZOTQ2P;QnMhEk0YOUQ2o:jmMmER1SOTQ2P;hmMoEQ1SOYQ2n:dmMQFQ1SO[Q2l:_mMTFT1RO^Q2k:\\mMUFU1QO_Q2i:YmMYFT1QOeQ2f:SmM]FV1oNgQ2d:nlMaFT1QOPR2^:glMfFW1nNRR2[:clMlFU1nNXR2W:\\lMQG[1iNZR2V:nkM^Gd1_N^R2T:hkMbGh1]N`R2Q:bjM]DaKW4Z7[MfR2P:XjMPIR3QMeR2P:RjMUIV3lLkR2P:kiMVIZ3jLkR2Q:fiMZI]3fLnR2P:biM]I^3dLPS2Q:ZiMbIc3`LSS2o9XiMbId3^LVS2P:SiMeIkNfJa2e1aU2R:PiMdIoNgJ\\2d1fU2Q:lhMgIROmJYN=e0YO=g1gX2P:ihMhIUOZLkMWN5K2b0U1[1kX2P:dhMkI[OaMROeNPY2o9ahMmI]O`MoNeNTY2o9\\hMPJ_O^MnNdNWY2P:ZhMoIA]MkNgNZY2o9VhMoID\\MjNgN]Y2n9ShMQJE\\MjNdN_Y2P:ogMRJG\\MfNfNcY2n9ngMQJI[MfNeNdY2Q:igMRJK]M`NcNmY2o9fgMSJJ]M`NdNoY2o9cgMTJL3aX2j5`gMVJM0dX2n5XgMVJ3KfX2o5hfMfJ>^OiX2Q6jeM^K[1`NlX2]>SgMdAmX2\\>RgMdAnX2^>PgMcAPY2\\>PgMeAPY2\\>ofMcARY2a>ifM_AWY2h>bfMYA^Y2k>]fMUAdY2k>ZfMWAfY2i>XfMXAiY2j>TfMWAlY2k>QfMVAoY2l>neMUARZ2P?geMRAYZ2o>aeMUA_Z2Pf0100000O100000O0100O0100000O0100O10O0100O100O01000O01000O10O00100000N2000000O1O0100O010000O10O10O1O1000O10000O10O1O0100000000O10000000000O100000WO\\eMaTOdZ2_k0\\eMaTOdZ2Xl000O100O02O00O100000000O2O000O10000O10000O100000000O0100O10O100000O0010000O0010OO11000O1O10OO20O10O1O10O0100O010O0010O10N1100O10N1100O00001OO11N2N2OO02O001O001O0O2N101O1N2N11OO20ON300N2O10O01N2O1O10O01O001000000O1O10N11O100O10O1O01O100O011NO11O1O1OO1100O1O100O100O1O10000O100O1O100O1O2O0N3OOO3N1M300N200J6N2N2M3cNXQOjiMkn0UV2ZQOeiMhn0ZV2\\QO^iMin0`V2\\QO\\iMen0dV2X1M1O100O100O10002M100O102M2O3L3N:F000O01O10000N1100OO200L310N110L40ON3O1N1O2K4O2N2N101N1N3O0N3O0O2O1N1O2N200M210N200M3OO0200N102L3O0N300N110M3O1N200N20OO200N101O1O1M300N200N1100000N200N200N200N20OO200N200N20OO20001OOO200N200N1011O00N200N200N2000000N200N200N3O0N200N201K400N200N200L401M2N1O201K4O1O2M2N200N200L400N200L400L400L40NN40L040NN4OO1100N2O2N2M2O102N002N0M5M102N000N2O3M1O10002N002L3N2N10001N3M2N2N2O1O1O1O1K4O2O1O1O1L4O0O2O1N100N3O1M201M220L201M201O1M2N3O001O1M202L202N002L202N002L202N002L201O1O00002N0000002N002L211NO11O010O1N1001O00010O01O002OO011M12OO001O02OO1O001000O000100O010O1O0011OO011N01O011OO003NO10O020N10OO21N04NN000022L01O1O1O22MO2N0020N03N0O11O00O1O12N00O1O20OO20OO4NN05MN14OL04NN130MO31MN31NO20NO04L1O5K1O3M2N2N3L4M1O3M3L5L2N4L2N4L2M4M1O3L2O1O1N3N1O1N2N3N1OO02NoVOhbMig0X]2TXOlbMkg0R]2VXOobMjg0P]2UXORcMkg0k\\2WXOVcMig0h\\2WXOZcMig0e\\2VXO^cMig0a\\2WXO`cMig0^\\2WXOdcMig0[\\2WXOfcMig0Y\\2UXOjcMkg0U\\2VXOlcMig0R\\2WXOPdMig0o[2WXORdMig0l[2WXOVdMig0i[2WXOYdMhg0f[2WXO\\dMkg0a[2UXO`dMkg0^[2UXOddMkg0[[2TXOgdMlg0W[2TXOkdMlg0T[2UXOmdMjg0Q[2UXOReMkg0mZ2UXOTeMkg0jZ2UXOWeMng0fZ2RXO[eMng0cZ2QXO`eMog0_Z2QXObeMog0\\Z2PXOgeMRh0UZ2PXOkeMPh0SZ2RXOmeMng0RZ2SXOneMmg0QZ2RXOQfMPh0lY2QXOTfMog0jY2QXOXfMog0gY2RXOYfMng0dY2SXO\\fMQh0aY2oWO`fMQh0^Y2nWOefMRh0YY2oWOhfMQh0VY2PXOlfMQh0PY2oWORgMQh0mX2nWOUgMRh0iX2oWOXgMQh0gX2mWO\\gMSh0cX2nWO\\gMSh0aX2nWOagMTh0\\X2lWOegMTh0XX2lWOlgMUh0QX2kWOPhMUh0oW2kWOQhMVh0nW2iWOThMWh0jW2jWOWhMXh0fW2hWO[hMXh0cW2hWO_hMZh0^W2eWOdhM[h0ZW2eWOhhM[h0WW2eWOjhM[h0RW2fWOPiM]h0nV2cWORiM]h0lV2bWOWiM^h0gV2cWOYiM_h0dV2aWO^iM`h0aV2_WO`iMah0^V2^WOeiMdh0WV2]WOjiMch0TV2^WOmiMbh0RV2]WOPjMch0mU2^WOUjMdh0hU2\\WOYjMdh0eU2[WO]jMhh0`U2XWOajMhh0^U2XWOcjMjh0ZU2UWOgjMlh0VU2UWOljMlh0RU2SWOPkMmh0nT2TWOSkMmh0kT2RWOWkMoh0gT2PWOZkMQi0dT2PWO]kMRi0_T2nVOckMRi0\\T2oVOckMSi0YT2mVOjkMTi0UT2kVOlkMVi0QT2fVOQhMoNQ4]j0kS2eVOXlM\\i0fS2cVO\\lM^i0aS2cVO`lM^i0]S2aVOflM`i0XS2aVOhlMai0TS2]VOPmMdi0nR2]VORmMdi0kR2\\VOWmMfi0fR2[VOZmMei0dR2YVO`mMii0]R2XVOcmMhi0[R2YVOgmMgi0WR2ZVOimMgi0SR2ZVOomMgi0PR2XVOQnMii0lQ2YVOTnMhi0iQ2YVOYnMfi0eQ2YVO^nMhi0`Q2XVOanMii0\\Q2VVOgnMki0WQ2UVOjnMli0SQ2TVOonMoi0lP2RVOUoMni0jP2PVOZoMQj0cP2oUO^oMQj0`P2oUOboMRj0\\P2oUOdoMRj0e1nTOZg1Q1SWNRj0a1oTOZg1n0WWNTj0]1PUOZg1k0\\WNTj0Y1QUOZg1m0]WNSj0W1QUOZg1l0aWNTj0S1QUOZg1l0dWNTj0P1QUOZg1k0hWNUj0m0PUOZg1k0jWNUj0k0QUOXg1j0PXNWj0e0oTO[g1j0QXNXj0b0oTO\\g1h0UXNXj0=QUO]g1g0WXNYj0;QUO\\g1g0[XNXj07QUO]g1i0\\XNVj06RUO\\g1g0aXNXj01QUO^g1f0cXNZj0MPUO_g1g0eXNYj0JQUOag1e0gXNZj0GRUO`g1e0kXNYj0BSUObg1d0nXNXj0@TUOag1d0QYNYj0ZOVUOdg1`0TYNZj0VOWUOeg1?WYN[j0ROUUOhg1?XYN[j0nNXUOhg1?[YNZj0jNXUOjg1?]YNYj0hNXUOjg1?aYNXj0cN[UOkg1nQ2RCm[NU5QCP8PQ2lBT\\Nn4oBR8lP2QCX\\Ni4UCo7dP2WCY\\Ni4UCo7_P2XC_\\Ng4TCQ8[P2XCf\\Nc4SCPJ`Nh=hQ2fCi\\N_4RCk7XP2dCi\\N`4QCk7QP2fCR]N_4PCh7mo1iCT]N]4QCf7ko1oCX]NY4PC]7PP2YDQ]NY4PC^7jo1\\DX]NU4TCY7do1bDY]NU4SCY7`o1aDd]NR4SCe6lo1VET]NU4PCc6jo1YEY]NS4nBc6ho1\\EZ]NQ4nBc6fo1ZEb]NP4iBW6QP2kEW]Nn3hBU6QP2lE\\]Nm3cBW6no1mEa]Nl3aBW6lo1lEh]Ni3fBe5no1aFZmM_NS`0[5eBe5ko1bFf]Nf3`Be5lo1dFe]Nh3_Bd5ho1fFn]Nc3ZBg5fo1eFS^Nd3`BS5fo1YGn]Nb3\\Bn4lo1^Gk]Nd3YBn4ho1`GU^N^3SBR5go1^GY^N]3hBQ4Zo1dHR^NY3dBm3_o1hHP^N[3aBm3\\o1iHY^NV3[BQ4Yo1jH^^NU3XCf2en1TJ[^Nn2RCc2ln1^JS^NQ3QC`2jn1`J[^Nl2kBb2kn1`J]^Nn2YCc1dn1`KZ^Ni2RC[1on1mKo]Nh2RC[1ln1lKZ^Nd2kB`1jn1iK_^Nf2hBa1fn1jKe^Nd2VCj0[n1aLa^Ne2TCg0[n1eLc^Ne2QCd0fk1ZKoPN^1[`0d2PCb0fk1_KkPN\\1f`0^2VC6\\k1QLgPNZ1i`0\\2WC9Xk1RLdPN[1Qa0X2SC5^k1XL\\PNZ1Va0Y2PC3^k1]LXPNX1`a0U2RCHZk1lLRPNW1da0U2PCGZk1nLooMX1ja0o1oBF\\k1TMhoMX1oa0o1lBC^k1WMfoMV1Rb0P2jBC\\k1YMdoMU1Yb0m1P\\O_LT7c2Uk1lMomMFm0a1lb0j1VCQOSk1oMlmMHk0_1Rc0i1TCQORk1PNkmMIl0\\1Uc0k1QCPOSk1PNjmMKh0\\1bc0c1mBnNRk1kN]nMd0gc0`1kBPOQk1nN\\nMa0ic0`1kBQOoj1oNYnM`0Qd0`1gBQOnj1QOWnM`0Vd0\\1nBhNfj1]OTnM>]d0[1iBjNej1^OSnM>`d0Z1hBjNdj1@nmM?id0T1gBkNdj1CjmM?kd0S1gBkNcj1GgmM9Ue0R1aBnN_j1h1QcNZO`BmN_j1h1TcNXO_BoNZj1l1XcNVO]BnN[j1h1acNTObBfNmi1W2acNSObBfNhi1Z2kcNmN]BhNfi1]2ncNkN\\BhNei1\\2VdNgN]BeN\\i1e2WdNfN]BdN[i1g2]dNaNXBhNZi1h2^dN`NXBhNYi1h2`dN_NXBiNWi1g2gdNXLcYOR2g8gNnh1o2mdNXNUBjNlh1n2PeNXNTBjNkh1m2TeNXNRBjNjh1n2WeNUNSBkNch1n2^eNVNSBhN^h1Q3aeNWNQBhN]h1P3deNXNoAhN\\h1P3ieNUNmAiNYh1Q3meNUNoAdNUh1V3meNVNoAcNSh1V3PfNWNdc1h1]\\NXNcc1f1d\\NUN[c1k1f\\NUNZc1j1g\\NVNYc1h1i\\NXNWc1f1Q]NTNob1k1R]NUNnb1i1V]NUNib1k1X]NTNib1j1]]NRNcb1m1^]NSNcb1j1`]NUN`b1j1a]NVN_b1h1c]NYN]b1e1g]NXNYb1g1i]NYNVb1f1k]NZNUb1e1l]N[NTb1c1S^NXNma1g1V^NXNia1g1X^NYNha1f1[^NYNda1f1]^NZNda1c1`^N[N`a1e1`^N[N`a1c1c^N^N[a1a1g^N^NYa1a1j^N^NUa1a1l^N`NRa1`1Q_N^No`1_1T_NaNk`1\\1[_NdNb`1S1^eMYNSj0d0_`1n0o_NPOQ`1n0Q`NSOn_1l0U`NSOj_1n0U`NROj_1o0X`NQOe_1Q1Z`NoNe_1o0``NPO__1l0e`NTOQ_1_ORfM\\1Qk0TOk^1BSfMZ1Rk0TOj^1CSfMZ1Yk0nNb^1]1^aNcNa^1\\1gaN^NX^1b1iaN^NV^1b1maN[NS^1f1maNZNR^1g1mk01ON2001OO1O11OO1MZjLYNeU3h14OO11O00O2000O00000010O10O00100O1O00100O10RjL[NlU3g100O100000O100O100O00100000O00001O2N1O2N101O1OO1001O1N01O10000O10O10O001O1O010O00100000OO21N10MYjLWNhU3g131O101N01O0100O01O00001O010O1O0FUjLlNjU3T1VjLkNlU3U1TjLjNlU3W1TjLgNnU3X18O0001O10O1O01O0010O1O0001O01O0010O10OO1100O00O20N20M30NliLcNTV3]11001O0100N20O010N1011N1O0eNiiLY1WV3210O01O10O1M3001N00010O100ON30O1O01O10N11O010N110000O0001O10O1N11O010O01O0100O01O0010O0010O0O110O01O10N2O010O001O100O01000O000010O100O0001OO20O0010O0100O01O00001O001O10O00O1100O10O1OO1010O010O1QjLdNdU3]1XjLiNdU3f1IVN`jLk1_U36O1N2O1N21NO2N2N2O00010kjLcMPU3b2O2M2O10000O1O1001N00002O000ON3OO2000O0100O0O111O000M3O1N2M300N1O2O0O2N200O2N1000O0O21N10O1N1001O1O01O10N1O2N0011OO110N2O1N20ON030O10O0100N20OO11O011NO3ON2000N2N1O11M[NWjLd1iU322N200O01O0010N200N020000O0O20O01O2O0000O00O2O2O00O2N1N11N110O01N1101N2NOXjLYNeU3f151N20ON31O11NI_jLZN^U3h1cjLXN]U3g1djLZNZU3g1fjLYNYU3i19M3O000100O1O1000NVjLYNjU3g1NYNYjLh1gU3XNXjLi1hU3N401ON1O10O201ON2001O00O1O1OO2ON12000OO1010OO02NLWjL`NiU3`1XjL_NhU3`17O01N1O20OO[NUjLf1hU3[NXjLe1hU3401O0O2N1O02OO3N1MNajLRN^U3P232M1O1ON3LajLRN^U3P22N_jLRNaU3m110^jLRNcU3n120N21N1OO200O00010O010M2100O10J51N0200M201M21O000100O0O10O2000O011ON200O1O1O010O1000OM40O11ON200000O10N3O0O1O10000N2O11O0O2OL5O0000000LdMojL\\2QU35O0O02M20N11O1O001N3K1hMhjLY2WU33O02O00O002LcMmjL[2VU312NO0021N2O0N10100000O00NejLkM\\U3T220010N20N11O100O1O1O00O21M2O0012K1200O10O01O1OO2O01O1OO20O10NQN^jLo1bU320O00001O0000100000N1O1010O1O1000OO20M120001NNSN^jLl1cU330O11N1OO_jLPN`U3Q221ON100O20O1O00O20000O0O11N20O0O20M210O0000010O001O10J53M1O11OO000N3M30O3M1O10O0010N2O101O000O1001OM21O10OO01101O0O1NN40OO[jLTNeU3k1\\jLUNdU3j1]jLWNaU3k131O1O010O10N200NZjLUNeU3l11100O000O20000ONO301000O2NNRN_jLn1_U350O2L12000O01O01O01M30O01O12N0M2010L31O100NO30N3O001OO01O0UN[jLh1eU33O12O00N110NO300O1000M2100ON1200O01O0N210000M111000001NNTN]jLk1dU3210O010N20N2O1N20N110000000O1O00001000OO20O01O001O0010O10N3N0001O1O1O0001O1000N21N010M21O1O0002O0OL`jLUN_U3l1ajLTN_U3k152MN40O1O10N20M111OO3N100OO1011NO11O010000O000010000O01O1N10010O0000O20O1O01O10O0010O01O10N0011O010O1O01N2000O000000100OMUN\\jLm1cU322N10O10O00O2O01OLTN`jLl1aU342OMO3OO2O2N01O4K11N2OO2000O01000O00O110O001O1O010O0010000O10OO0110O010O0ZlLUNcQ3k1ZnLUNRN50K^S3k1_nLbN_Q3Z1dlLYNo1>[Q3Z1enLjNXQ3V1hnLPOSQ3o0lnLUOPQ3m0onLUOoP3k0PoLXOoP3g0RoL\\OiP3f0ToL]OlP3c0ToL^OjP3b0VoL@hP3a0XoL_OhP3b0VoL_OiP3b0WoL^OhP3c0WoL^OiP3a0WoL@iP3?XoLAeP3b0[oL[OhP3d0XoL]OgP3c0ZoL]OdP3e0[oL[OfP3e0ZoLZOfP3g0PoLPNhNZ1WR3f0jnLoMiNl1ZR34mnLNUQ32jnLOVQ30jnL1VQ3OinL2WQ3NhnL3WQ3NgnL4XQ3LhnL5TQ3NmnL2SQ3LmnL6SQ3JmnL5TQ3KknL7SQ3JlnL7SQ3GPoL9nP3IQoL7QQ3GPoL9oP3GQoL:nP3FRoL9PQ3GPoL8PQ3IPoL6QQ3JlnLPNoNT2WR3JknL9SQ3InnL7RQ3HnnL7UQ3HjnL9UQ3HjnL7WQ3IinL8VQ3HhnL9YQ3HdnLoMTOX2ZR3HbnL8aQ3G_nL2gQ30XnL0iQ30UnL2kQ3NSnL3mQ3LUnL3iQ3OUnL2mQ3NQnL2QR3NkmLnM@S2gR3OimL2WR30hmLJ_R33QmLoM`0l1bR35^mLKcR36\\mLGeR3;ZmLCiR3>TmLEiR3=WmLBkR3>SmLCnR3;RmLDQS3;llLlMKi1VS3b20OO1NeKmlLZ4TS3gKklLY4US33000O2L300O2N11OMdlLnK]S3R430000L4M3O10O02K300O2N2OOO3O00001N2M0eLlkL[3TT322N0001N11N2N2O1O1N2N10001N002O0O02O03N0NO3O01O1N2N1O101O10O02NO02N2O00010N2N1O002O0O3L21O1O1NcMljL[2VU311N101O1O10O10NfjLiMYU3W221MhMijLX2WU321N20N011O0001L4000O1O01O1O10O0N30N11000O1OO1001000O0001ON22OO1O00010O0O11O3NO0001OO1O110OM4N20O1ON12O1O1O10O1000N2000O01N11O0010O01N2O02M1100O00001OO2O10O0O200O000100O00O020N20N20O0010OO200OO2N11000O1ON3O1O0100O0O2OO2O10O00O10O20O2ON200O01O00O2OO3N01O0O21O0O1NO2100N2ON300O010O0100O00O1100O0010N02O01M120001NN201OO20000O001ON210000O00001OO2N01100000O000O110O01O010LmMdjLT2]U321N1OO12OO0O10O200N11O1O10N20N2O0001O001L`jLSN^U3n150O02OM121OO01O1O10N1001000O01N200O1OO110O1O01M1200O000000001000O0001000ON201OO2O000100N20N11O011ON0200ON30O1O01O01O1O01N20O1N1100MoMajLQ2`U311O10O10NO31NNoMajLR2^U32100N110O0010N11O1O1ONPN`jLQ2^U33101ON0200OO2O01O1N11O100OOajLnM^U3S211OO101O0010N20O1OO11O100OO2N11OO020000N`jLoM_U3R220N11O011N01L31M40OO1ON30N20L40N20O02OO001O00010MnMcjLR2]U321ON21O1N20O02ON1O20N2000N110O0002NN12O1OO20000O000O11O01ON3O10M120N2000N11O1O10O1O10M3O01N2OO20000O00O10100O01N11O00100OO20NOnMcjLS2\\U31djLkM\\U3U2012N100O0O11O1O00O1100O01OO20O1OOmMbjLS2]U32001O10N100010O1O010O01N10N4N10O10OO1001O1O100ONQN`jLn1aU3121M110O1N1100M12N20O1O1O10NO21O1O001O0001000O1O010O1O2MO30010OOO0101O3OOM30N2OM40OOLnjLhMSU3X25L4N2O01N11000O1ON30O001OO20NmMbjLQ20oM]U3T211N2002MO11O10OOO30O0000100O00010O1ON2010O00010OO13M10NmMbjLR2^U3210NO21O02OO0O20O002N01O01ON30ONmMdjLR2\\U31211ON2O0010OO1O12N1O1O1O0001O11N0OO21O00O1101N2ON2NmMbjLQ2^U342OKnMejLQ2\\U322O2OL301OO11001OOO20N2O10NOjMfjLV2[U311N20O00010L22O101NL500M2O2OOJfMQkL^2oT33100ON3NO3OO20O010O001O1OM_MUkL`2kT333O2MO101O10O1O1O100O100O1O1001OMkjLeMVU3[220000N20000000000O100O12NO1O10000N2N2O13M1O1O1OO100O1O1O1O100M3000000O1000000000000001O00000000000000N2N2K5M3N2N21O0000000000001O000000IQjLgNPV3Y16DiiLZOWV3`0PjLZOKMUV3i0XjLWOhU3i0b0N2O100O1O1O1O1N2001OMnhLBSW3>200O100LkhLGVW393N2N200N200000000000000",
        "size": [3317, 4417]
    }
},

For a keypoints object, “keypoints” and “num_keypoints” are exported.

"annotations": [
{
    "area": 555429,
    "bbox": [732, 1446, 864, 1309],
    "category_id": 1,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "keypoints": [1108, 1633, 2, 1104, 1603, 2, 1112, 1596, 1, 1149, 1593, 2, 1146, 1582, 1, 1108, 1730, 2, 1334, 1687, 2, 1061, 1890, 2, 1387, 1936, 2, 1017, 1665, 2, 1458, 2106, 2, 1160, 2060, 2, 1299, 2053, 2, 1174, 2291, 2, 1196, 2291, 2, 1321, 2609, 2, 1196, 2590, 2],
    "num_keypoints": 17,
    "segmentation": [
        [986, 1654, 1030, 1613, 1087, 1596, 1105, 1511, 1168, 1485, 1183, 1449, 1216, 1446, 1239, 1496, 1260, 1557, 1236, 1619, 1267, 1662, 1359, 1678, 1411, 1864, 1477, 2065, 1494, 2157, 1594, 2367, 1454, 2488, 1330, 2578, 1359, 2618, 1409, 2659, 1384, 2695, 1319, 2754, 1303, 2741, 1300, 2710, 1250, 2702, 1099, 2720, 1048, 2705, 1042, 2673, 1105, 2655, 1159, 2601, 1165, 2485, 1054, 2414, 895, 2340, 789, 2304, 732, 2278, 794, 2135, 889, 2013, 970, 1913, 968, 1714]
    ]
},
"annotations": [
{
    "area": 2977340,
    "bbox": [1435, 1125, 1105, 3708],
    "category_id": 1,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "keypoints": [1904, 1495, 2, 1970, 1417, 2, 1822, 1433, 2, 2068, 1481, 2, 1730, 1533, 2, 2308, 1951, 2, 1595, 2075, 2, 2369, 2555, 2, 1561, 2614, 2, 2371, 3076, 2, 1508, 3136, 2, 2172, 3035, 2, 1753, 3101, 2, 2280, 4034, 2, 1806, 4124, 2, 2367, 4833, 1, 1842, 4833, 1],
    "num_keypoints": 17,
    "segmentation":
    {
        "counts": "ZUhc6a0af4b0]Oc0^Oa0^Oc0]Ob0_Ob0]Oc0]Ob0_Ob0]Oc0nnKjJS_3h5T`LkKa^3g4d`LmLP^3f3VaLmM_]3d2haLoNl\\3d1YbLi8bS3jGdkLg8ST3iGTkLi8bT3gGgjLj8oT3gGYjLj8^U3eGjiLm8lU3dG\\iLm8[V3fGihLl8mV3oGQhLb8eW3YHXgLZ8^X3aH_fLP8WY3kHgeLf7oY3UIndL]7iZ3]IUdLT7a[3`b0G9F:F9H1N2N2O1N2O1N2N2O1N2N2O1N2O1N2N2O1N2N2K5J6J6J6K5J6J6J6J6J6J6J6J5K6J6J6J6J6J6J6J6J6J6J6J6J6PgMn]Nd[1]c1WdNh\\NVZ1kd1eeNY[NoY1Te1leNP[NSZ1Re1heNS[NVZ1od1eeNU[NZZ1md1aeNW[N^Z1kd1]eNY[NbZ1id1YeN\\[NeZ1fd1VeN^[NiZ1dd1ReN`[NlZ1cd1odNb[NoZ1`d1ldNd[NS[1^d1hdNf[NW[1\\d1ddNh[N[[1Zd1bdNi[N[[1Zd1bdNh[N\\[1[d1`dNh[N^[1[d1_dNh[N_[1Zd1^dNh[N`[1[d1]dNg[Na[1\\d1\\dNg[Na[1\\d1\\dNf[Nc[1\\d1ZdNf[Nd[1]d1YdNe[Ne[1^d1XdNe[Nf[1]d1VdNf[Nh[1]d1UdNe[Ni[1]d1UdNf[Nh[1]d1UdNe[Nj[1]d1SdNe[Nk[1^d1RdNd[N^[1md1_dNV[NlZ1_e1QeNcZNZZ1Sf1ceNoYNTZ1[f1heNiYNTZ1[f1ieNgYNUZ1\\f1heNfYNUZ1^f1heNeYNUZ1^f1heNdYNUZ1`f1heNbYNVZ1af1geNaYNVZ1bf1heNaYNTZ1cf1ieN_YNUZ1cf1heN`YNUZ1cf1ieN`YNTZ1cf1ieN_YNTZ1df1jeN^YNTZ1ef1ieN]YNTZ1ff1jeN]YNSZ1ef1keN]YNRZ1gf1keN[YNSZ1gf1jeN]YNoV1ji1nhNXVNPW1ji1nhNXVNoV1ki1ohNWVNnV1mi1ohNVVNmV1mi1QiNUVNlV1ni1RiNTVNkV1Pj1RiNSVNjV1Pj1TiNRVNjV1Qj1RiNRVNkV1Qj1SiNRVNiV1Qj1UiNQVNhV1ej1chN]UNZW1[k1ogNgTNnW1Pl1\\gNSTNaX1dl1hfN^SNUY1Ym1UfNiRNhY1mm1ceNVRNYZ1Xn1XeNlQNeZ1an1mdNcQNP[1jn1cdNYQN`CdIWd1aU2jgNPQNkCcIXd1iU2_gNhPNVDbIXd1TV2SgN^PNbDaIXd1^V2ifNUPNlD`IWd1iV2^fNkoMXE_IWd1SW2SfNboMcE^IWd1]W2heNZoMmE]IXd1fW2\\eNQoMZF[IWd1QX2ReNgnMdF[IWd1\\X2fdN]nMPG[IVd1eX2\\dNUnMZGYIWd1oX2QdNlmMeGXIWd1ZY2fcNamMQHXIUd1gY2YcNVmM^HVIWd1RZ2kbNllMkHUIWd1_Z2]bN`lMYIUIVd1jZ2RbNTlMfITIUd1W[2eaNjkMRJRIVd1d[2WaN^kM`JRIUd1o[2k`NSkMmJQIVd1[\\2\\`NijM[KnHVd1h\\2l_NajMkKkHUd1T]2S_NajMeL^H?mMfa1c_2Y`NcjM_MPH=oMha1m_2`_NejMXNbG:QNka1X`2f^NejMROUG7UNma1``2n]NfjMKhF5WNPb1j`2R]NijMe0ZF3XNSb1]m2h]N]TM0[NUb1[m2h]N]TMM^NXb1Ym2g]N]TMK_N[b1Wm2g]N]TMIaN]b1Um2h]N\\TMFdN`b1Rm2g]N[VMVb1ii2f]NZVMWb1ii2f]N[VMVb1hi2h]NZVMUb1[o2M3M3N2O1O100O1O1O2M2O1O1O1O1O1O1O1O1O2N1O1N2O1O1O1O1O1O1O1O2N1O1O1N2O1O1O1O1O1O1O2N1O1O1O1N200O1O1O1O2N1O100O1O1O1O1O1O100O2N1O1O1O1O1O100O1O1O2N1O1O100O1O1O1O1O1O101N1O1O1O1O1O100O1O1O9G?A>B?A>C=B?A>B?A>B>B?B4K5K5K4L5L4K5K5K5K5L4K5K4L5K5L4K5K5K5L4K4L5K5K5L4K5K5K5K4M4K1O1O100O1O1O1O100O1O1O1O100O1O1O100O1O1O1O100O10000O100O10000O10000O100O10000O10000O100O10000O10000O100O10000O100O10000O10000O100O10000O10000O100O10000O10000O100O10000O100O10000O10000O100O10000O100O1O100O1O1O100O100O100O100O100O100O100O100O100O100O10000O100O100O100O100O100O100O100O100O100O100O100O1000000001O00001O0000001O0000001O0000001O0000001O00000`N`1UMl2UOj0ZOf0ZOf0YOh0YOf0ZOg0N2O1O001O1O1O0O2O1O1O001O1O1O0O2O1O00001O00001N10001O0000001O0O101O1O1O1O1O1O1N2O1O1O1O1O1O1O1N2O1O1O1O1O1O001N2O1O1O1O1O1O1O1jhL\\bNkT3f]1TkL[bNkT3f]1TkLZbNlT3g]1SkLZbNlT3g]1SkLYbNmT3h]1RkLYbNmT3h]1RkLXbNnT3i]1QkLXbNnT3i]1QkLWbNnT3k]1QkLVbNnT3k]1QkLUbNoT3l]1PkLUbNoT3l]1PkLTbNPU3m]1ojLTbNPU3l]1ojLUbNQU3l]1mjLUbNSU3l]1kjLVbNSU3l]1ljLTbNTU3m]1jjLUbNUU3l]1ijLUbNWU3l]1gjLVbNXU3k]1fjLVbNZU3k]1ejLVbNZU3k]1djLWbN[U3j]1cjLYbNZU3i]1djLYbN[U3h]1cjLZbN\\U3g]1bjL[bN\\U3g]1cjL[bN[U3f]1cjL\\bN\\U3e]1\\jLcbNbU3_]1RjLmbNmU3V_1N1N2O2N1N2O1N3N1O1N2O2N2M3N3L3N2N2N2O2M2N2N2N2N3M2O1N2N2N3M2N2N2O1N3M2N2N2N2N3N1N2N2N2N2N1O2O1N2N2N2N2N1O2O1N2N2N2N2N5K4M4K4L5K4L5K4L5K4L5K4L5K4L5K>B?A?A?A?A`0@5K1N3N2N1O2N1O2N1O2N2N1O2N1O2N2N1O2M4M3M2N3M3M2N3M3M2N3M3M2N3M2N3M2M4L4L3M4kYMjSNXa2Xl1d^MkSNZa2Yl1a^MiSN^a2Zl1^^MhSNaa2\\l1Y^MhSNea2[l1W^MgSNia2\\l1R^MfSNma2]l1o]MeSNPb2_l1k]MdSNSb2_l1h]MdSNWb2`l1d]MbSN[b2bl1`]MaSN_b2fl1X]M\\SNgb2kl1Q]MWSNnb2Qm1i\\MRSNUc2Um1b\\MnRN]c2Zm1Z\\MhRNfc2_m1Q\\MdRNmc2cm1k[M_RNTd2im1c[MYRN\\d2om1Z[MURNed2Qn1S[MQRNmd2Vn1jZMlQNVe2QP2O00001O0000001O00001O00001O00001O00001O0003N1N3M2O2M2N3M2O2M2N2O2M2N3N1N3M2O2M2N2O2M2N3N1N3M2O2M2ZWNTYMRa1of2e^NWYM[a1kf2]^N[YMda1ff2Z^NZYMfa1if2W^NWYMia1kf2T^NVYMma1lf2P^NTYMPb1nf2m]NSYMSb1Pg2j]NPYMWb1Qg2g]NoXMYb1Tg2c]NmXM]b1Ug2a]NkXM`b1Wg2\\]NjXMdb1Xg2Z]NhXMfb1\\g2U]NeXMlb1]g2Q]NcXMob1`g2n\\N`XMRc1cg2W[NlWMcMb0Wg1dg2Q[NmWMgM?Xg1gg2lZNnWMiM<[g1ig2hZNmWMlM:]g1kg2bZNnWMoM8_g1mg2^ZNnWMQN5ag1Qh2XZNmWMVN2bg1Th2SZNmWMYN0eg1Uh2nYNnWM[NMgg1Xh2iYNnWM^NKig1Zh2eYNmWMaNIkg1\\h2_YNoWMdNEmg1_h2[YNnWMfNDog1ah2VYNnWMjNAQh1ch2PYNPXMlN^OTh1fh2kXNnWMPO\\OUh1ih2fXNnWMSOZOXh1jh2aXNoWMUOWOZh1mh2\\XNoWMYOTO[h1Pi2WXNoWM\\ORO^h1Ri2QXNoWM_OoN`h1Ui2lWNoWMBmNbh1Xi2gWNmWMFkNdh1Zi2aWNoWMIgNfh1^i2[WNnWMLfNih1_i2WWNnWMLeNnh1_i2QWNQYMoh1aj200001O000000000000001O000000000000001O000000000000001O000000000000001O0000000000001O000000000000001O001O001O001O001O001O001O001O001O001O001O001O001O001O1O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O2N3M2N2N3M2N3M2N2N3M2N3M2N3M2N2N3M2N3UC]TNQnMek1mQ2dTNjmM_k1SR2kTNcmMWk1[R2SUN[mMoj1VX1TTN\\VOW1TAhj1RX1nTNXVOd0\\A`j1oW1hUNTVO2cAZj1jW1`VNRVO@jAWj1bW1UWNSVOnNQBSj1[W1lWNRVO[NYBPj1RW1bXNTVOhM`Bmi1jV1WYNPgNZJU7l2gJii1[ObSNjm0\\6cmNWLa:k1nHWh1KiTN\\n0j5PkNUNk=l0RGcf1S1[UNoLUN^l0V>]^O\\I^ETe1V2lUN^LlN_l0U=^_OQI]EYe1e1]VNnK[Ogl0Z]1M4L4L4LlXZS5",
        "size": [4834, 3648]
    }
},

In “categories”, “keypoints” and “skeleton” are exported.

"categories": [
{
    "id": 1,
    "keypoints": ["nose", "leftEye", "rightEye", "leftEar", "rightEar", "leftShoulder", "rightShoulder", "leftElbow", "rightElbow", "leftWrist", "rightWrist", "leftHip", "rightHip", "leftKnee", "rightKnee", "leftAnkle", "rightAnkle"],
    "name": "person",
    "skeleton": [
        [9, 11],
        [6, 12],
        [14, 16],
        [7, 13],
        [15, 17],
        [12, 13],
        [14, 12],
        [8, 6],
        [10, 8],
        [6, 7],
        [9, 7],
        [15, 13],
        [5, 3],
        [3, 1],
        [1, 2],
        [2, 4]
    ]
},

Import COCO JSON file

Import COCO JSON per image files

You can import the COCO RLE JSON files of the SA-1B dataset.

{
    "image":
    {
        "image_id": 1,
        "width": 1500,
        "height": 2060,
        "file_name": "sa_1.jpg"
    },
    "annotations": [
    {
        "bbox": [866.0, 946.0, 132.0, 199.0],
        "area": 14773,
        "segmentation":
        {
            "size": [2060, 1500],
            "counts": "TS_f15SP27K3N2iTNHWf1:bYN0Yf12cYN1\\f11mWN7SNKni11PVNS2OmMPj15aUN\\2;aMSj1m3`UNVL_j1m4N1O1O1O10000O10O10O100000000O10000O100O1O100O101O000000000O10O101N1N2N2O1O100O100\\KhUNT3Wj1jLnUNS3Tj1kLoUNR3Rj1mLTVNW3ci1hL`VNW3_i1hLdVNV3\\i1iLfVNV3Zi1jLgVNU3Yi1jLiVNV3Vi1jLlVNT3Ti1kLnVNT3Ri1lLoVNS3Qi1lLQWNS3oh1mLRWNR3nh1nLSWNQ3mh1nLVWNP3jh1PMWWNo2ih1QMXWNl2jh1TMWWNg2mh1XMUWNV1gNlN_j1NkVNS1jNkN]j12jVNQ1lNiN\\j16jVNm0mNjN[j19iVNk0nNjNZj1;iVNh0QOkNVj1=jVNe0TOjNTj1a0jVN3EXObi1e0YYNVOjf1j0\\4001O00001O00001O00001O10O01O001O1O1O1O1O2N1O1O1O1O1O1O100O101N10000O00100O1O1O100O1O1O0000lNRRNGQn17S1O2N1O101M4Mom^o0"
        },
        "predicted_iou": 0.9523417353630066,
        "point_coords": [
            [940.9375, 1034.5625]
        ],
        "crop_box": [622.0, 902.0, 567.0, 707.0],
        "id": 523353737,
        "stability_score": 0.9742233753204346
    },
    ...
}

Export Labelme JSON files

Annotation files are exported as Labelme JSON files.

{
    "flags":
    {},
    "imageData": null,
    "imageHeight": 3022,
    "imagePath": "wembley-S3Vq97p3gSk-unsplash.jpg",
    "imageWidth": 4666,
    "shapes": [
    {
        "flags":
        {},
        "group_id": null,
        "label": "anemonefish",
        "points": [
            [2152.53857421875, 556.815673828125],
            [2149.539306640625, 586.8057861328125],
            [2156.53759765625, 613.79681396484375],
            [2245.5185546875, 698.7686767578125],
            [2314.50390625, 737.75579833984375],
            [2308.505126953125, 782.74090576171875],
            [2315.503662109375, 814.73028564453125],
            [2331.500244140625, 835.723388671875],
            [2383.489013671875, 836.7230224609375],
            [2420.481201171875, 800.73492431640625],
            [2427.479736328125, 785.73992919921875],
            [2424.480224609375, 764.746826171875],
            [2511.461669921875, 775.74322509765625],
            [2524.458740234375, 795.736572265625],
            [2580.44677734375, 830.72503662109375],
            [2647.432373046875, 827.72601318359375],
            [2661.429443359375, 795.736572265625],
            [2661.429443359375, 772.74420166015625],
            [2653.43115234375, 757.7491455078125],
            [2675.426513671875, 762.74749755859375],
            [2681.42529296875, 800.73492431640625],
            [2692.4228515625, 797.7359619140625],
            [2701.4208984375, 737.75579833984375],
            [2723.416259765625, 687.7723388671875],
            [2744.41162109375, 662.78057861328125],
            [2735.41357421875, 647.78558349609375],
            [2722.41650390625, 650.78460693359375],
            [2697.421875, 641.78753662109375],
            [2737.4130859375, 599.80145263671875],
            [2737.4130859375, 569.8114013671875],
            [2668.427978515625, 529.82464599609375],
            [2580.44677734375, 522.82696533203125],
            [2535.45654296875, 494.83621215820312],
            [2533.45703125, 482.84017944335938],
            [2508.46240234375, 447.85174560546875],
            [2452.474365234375, 422.86001586914062],
            [2432.478515625, 420.86068725585938],
            [2393.48681640625, 430.85739135742188],
            [2375.49072265625, 457.84844970703125],
            [2284.51025390625, 479.84115600585938],
            [2215.525146484375, 506.83224487304688],
            [2160.536865234375, 543.82000732421875]
        ],
        "shape_type": "polygon"
    }],
    "version": "4.0.0"
}

Import Labelme JSON files

Export YOLO txt files

Annotation files are exported as YOLO text files. A YOLO text file is saved per an image.

yolo_export

├── datasets
│   └── sneakers
│       ├── images
│       └── labels
└── yolov5
    └── data
        └── sneakers.yaml

For a box object, the bounding box is saved. center_x, center_y, width, and height are float values relative to width and height of the image.

class_index center_x center_y width height
0 0.464615 0.594724 0.680000 0.769784

For a rotated box/polygon/cubic bezier/line/point/pixels object, the points coordinates are saved. This format is for YOLOv5 and YOLOv8/YOLO11 Instance Segmentation.

class_index x1 y1 x2 y2 x3 y3 ...
0 0.180027 0.287930 0.181324 0.280698 0.183726 0.270573 ...

For a keypoints object, the bounding box and the points coordinates are saved. This format is for YOLOv8/YOLO11.

class_index center_x center_y width height x1 y1 v1 x2 y2 v2 x3 y3 v3 ...
0 0.545230 0.616880 0.298794 0.766239 0.522073 0.309332 2 0.540170 0.293193 2 0.499589 0.296503 2 ...

Import YOLO txt files

Export DOTA txt files

Annotation files are exported as DOTA text files. This format is for MMRotate.

dota_export

Settings menu.

x1 y1 x2 y2 x3 y3 x4 y4 category difficult
1300.536987 1413.503784 1192.848755 1535.568848 530.876038 951.562073 638.564270 829.497009 truck 0

Import DOTA txt files

Export CSV file

Annotation files are exported as a CSV file.

path,annotations
/Users/ryo/rcam/test_annotations/test/_test_min/images1500/daniel-garcia-472792.jpg,[{"label":"sneakers-converse-yellow","type":"rectangle","coordinates":{"x":565,"y":488,"width":300,"height":377}},{"label":"sneakers-converse-yellow","type":"rectangle","coordinates":{"x":907,"y":503,"width":235,"height":265}}]

Import CSV file

Export train/val/test folders

Export object names file

Export a yaml file as dictionary for YOLOv5 and YOLOv8/YOLO11.

path: ../datasets/keypoints
train: images
val: images

kpt_shape: [17, 3]
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]

names:
  0: person

Export a yaml file as array for YOLOv5.

path: ../datasets/sneakers
train: images
val: images

nc: 2
names: ['sneakers', 'ignore']

Export an object names text file.

sneakers
ignore

Import object names file

You can import an object names file or import object names from xml files.

Export mask images

You can specify which mask image to export.

For the indexed color image.

mask

Export screenshots

You can export images and annotations as jpg images.

View menus.

Export augmented images

You can augment images and annotations using “Flip”, “Crop”, “Contrast”, and “Rotate”.

Settings menu.

augment

Export sliced images

You can slice images and annotations horizontally and vertically.

slice

Export objects and attributes stats