How to use? Read our Help page.
Post the problem to our Github issues.
Have questions? Send an email to support@rectlabel.com.
Detectron2 is Facebook AI Research’s next generation library that provides state-of-the-art detection and segmentation algorithms.
Install CUDA, cuDNN, and PyTorch.
Install Detectron2.
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2
Download training/inference scripts.
wget https://huggingface.co/rectlabel/detectron2/resolve/main/detectron2_scripts.zip
unzip detectron2_scripts.zip
mv detectron2_scripts/my_train_*.py detectron2/tools
mv detectron2_scripts/my_predictor_*.py detectron2/demo
mv detectron2_scripts/visualizer.py detectron2/detectron2/utils
Download person dataset.
wget https://huggingface.co/datasets/rectlabel/datasets/resolve/main/person.zip
unzip person.zip
mv person detectron2/demo
To label your custom dataset, use Edit menus.
To export your custom dataset, use Export menus.
This is the training script.
import os
from detectron2 import model_zoo
from detectron2.config import get_cfg
from detectron2.data.datasets import register_coco_instances
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultTrainer
from detectron2.evaluation import COCOEvaluator
from tools.my_train_segmentation import MaskType
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
return COCOEvaluator(dataset_name, output_folder)
def main():
mask_type = MaskType.BOX
images_path = "person/images"
if mask_type == MaskType.POLYGON:
annotations_path = "person/coco_polygon.json"
else:
annotations_path = "person/coco_rle.json"
register_coco_instances("dataset_train", {}, annotations_path, images_path)
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("dataset_train",)
cfg.DATASETS.TEST = ()
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS = 17
# cfg.MODEL.DEVICE = "cpu"
cfg.SOLVER.BASE_LR = 0.001
cfg.SOLVER.MAX_ITER = 10000
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.DATALOADER.NUM_WORKERS = 2
if mask_type != MaskType.BOX:
opts = [
'MODEL.MASK_ON', True,
'MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT', 1.0
]
cfg.merge_from_list(opts)
if mask_type == MaskType.POLYGON:
cfg.INPUT.MASK_FORMAT = "polygon"
elif mask_type == MaskType.RLE:
cfg.INPUT.MASK_FORMAT = "bitmask"
setConfigKeypoint(cfg, "dataset_train")
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = Trainer(cfg)
trainer.resume_or_load(resume=True)
trainer.train()
def setConfigKeypoint(cfg, dataset):
keypoint_names = [
"nose",
"leftEye", "rightEye",
"leftEar", "rightEar",
"leftShoulder", "rightShoulder",
"leftElbow", "rightElbow",
"leftWrist", "rightWrist",
"leftHip", "rightHip",
"leftKnee", "rightKnee",
"leftAnkle", "rightAnkle",
]
keypoint_flip_map = [
("leftEye", "rightEye"),
("leftEar", "rightEar"),
("leftShoulder", "rightShoulder"),
("leftElbow", "rightElbow"),
("leftWrist", "rightWrist"),
("leftHip", "rightHip"),
("leftKnee", "rightKnee"),
("leftAnkle", "rightAnkle"),
]
keypoint_connection_rules = [
("leftEar", "leftEye", (102, 204, 255)),
("rightEar", "rightEye", (51, 153, 255)),
("leftEye", "nose", (102, 0, 204)),
("nose", "rightEye", (51, 102, 255)),
("leftShoulder", "rightShoulder", (255, 128, 0)),
("leftShoulder", "leftElbow", (153, 255, 204)),
("rightShoulder", "rightElbow", (128, 229, 255)),
("leftElbow", "leftWrist", (153, 255, 153)),
("rightElbow", "rightWrist", (102, 255, 224)),
("leftHip", "rightHip", (255, 102, 0)),
("leftHip", "leftKnee", (255, 255, 77)),
("rightHip", "rightKnee", (153, 255, 204)),
("leftKnee", "leftAnkle", (191, 255, 128)),
("rightKnee", "rightAnkle", (255, 195, 77)),
]
MetadataCatalog.get(dataset).keypoint_names = keypoint_names
MetadataCatalog.get(dataset).keypoint_flip_map = keypoint_flip_map
MetadataCatalog.get(dataset).keypoint_connection_rules = keypoint_connection_rules
if __name__ == "__main__":
main()
Run the training script.
cd detectron2/demo
python ../tools/my_train_keypoints.py
This is the inference script.
import cv2
import glob
import os
from detectron2 import model_zoo
from detectron2.config import get_cfg
from detectron2.data.datasets import register_coco_instances
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor
from detectron2.utils.visualizer import Visualizer
from detectron2.evaluation import COCOEvaluator, inference_on_dataset
from detectron2.data import build_detection_test_loader
from tools.my_train_keypoints import setConfigKeypoint
from tools.my_train_segmentation import MaskType
from my_predictor_box import SaveType
def main():
mask_type = MaskType.BOX
images_path = "person/test"
MetadataCatalog.get("dataset_test").set(thing_classes=["person"])
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
# cfg.MODEL.DEVICE = "cpu"
cfg.SOLVER.IMS_PER_BATCH = 1
if mask_type != MaskType.BOX:
opts = [
'MODEL.MASK_ON', True,
'MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT', 1.0
]
cfg.merge_from_list(opts)
setConfigKeypoint(cfg, "dataset_test")
predictor = DefaultPredictor(cfg)
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
save_type = SaveType.COCO_JSON
if save_type == SaveType.IMAGE:
image_paths = glob.glob(os.path.join(images_path, "*.jpg"))
for image_path in image_paths:
image = cv2.imread(image_path)
outputs = predictor(image)
v = Visualizer(image[:, :, ::-1], MetadataCatalog.get("dataset_test"), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
output_path = os.path.join(cfg.OUTPUT_DIR, os.path.basename(image_path))
cv2.imwrite(output_path, out.get_image()[:, :, ::-1])
elif save_type == SaveType.COCO_JSON:
annotations_path = "person/coco_test.json"
register_coco_instances("dataset_test", {}, annotations_path, images_path)
evaluator = COCOEvaluator("dataset_test", cfg, False, output_dir=cfg.OUTPUT_DIR)
val_loader = build_detection_test_loader(cfg, "dataset_test")
inference_on_dataset(predictor.model, val_loader, evaluator)
if __name__ == "__main__":
main()
Run the inference script.
cd detectron2/demo
python my_predictor_keypoints.py
If you set save_type = SaveType.COCO_JSON
, you can save the inference result as coco_instances_results.json in the output folder.
To import the inference result to RectLabel, use Export menus -> Import COCO JSON file.