How to use? Read our Help page.
Post the problem to our Github issues.
Have questions? Send an email to support@rectlabel.com.
Using the Amazon EC2 g4dn.xlarge instance which costs $0.526/hour, all installations will finish in 30 minutes.
Install CUDA and cuDNN.
[wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt update
sudo apt install cuda-drivers
reboot
nvidia-smi
sudo apt install cuda-toolkit-11-8
vi ~/.bashrc
export PATH="/usr/local/cuda/bin${PATH:+:${PATH}}"
export LD_LIBRARY_PATH="/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}"
source ~/.bashrc
which nvcc
nvcc --version
apt list libcudnn8 -a
cudnn_version=8.9.7.29
cuda_version=cuda11.8
sudo apt install libcudnn8=${cudnn_version}-1+${cuda_version}
sudo apt install libcudnn8-dev=${cudnn_version}-1+${cuda_version}
sudo apt install libcudnn8-samples=${cudnn_version}-1+${cuda_version}
Install PyTorch and OpenCV.
sudo apt-get update
sudo apt-get install build-essential tar curl zip unzip autopoint libtool bison libx11-dev libxft-dev libxext-dev libxrandr-dev libxi-dev libxcursor-dev libxdamage-dev libxinerama-dev libxtst-dev
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc
conda create --name my_env python=3.9
conda activate my_env
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
import torch
torch.cuda.is_available()
pip install opencv-python
import cv2 as cv
print(cv.__version__)